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Numerical solutions of fully non-linear and highly dispersive
Boussinesq equations in two horizontal dimensions
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SUMMARY

This paper investigates preconditioned iterative techniques for �nite di�erence solutions of a high-order
Boussinesq method for modelling water waves in two horizontal dimensions. The Boussinesq method
solves simultaneously for all three components of velocity at an arbitrary z-level, removing any practical
limitations based on the relative water depth. High-order �nite di�erence approximations are shown to
be more e�cient than low-order approximations (for a given accuracy), despite the additional overhead.
The resultant system of equations requires that a sparse, unsymmetric, and often ill-conditioned matrix be
solved at each stage evaluation within a simulation. Various preconditioning strategies are investigated,
including full factorizations of the linearized matrix, ILU factorizations, a matrix-free (Fourier space)
method, and an approximate Schur complement approach. A detailed comparison of the methods is
given for both rotational and irrotational formulations, and the strengths and limitations of each are
discussed. Mesh-independent convergence is demonstrated with many of the preconditioners for solutions
of the irrotational formulation, and solutions using the Fourier space and approximate Schur complement
preconditioners are shown to require an overall computational e�ort that scales linearly with problem
size (for large problems). Calculations on a variable depth problem are also compared to experimental
data, highlighting the accuracy of the model. Through combined physical and mathematical insight
e�ective preconditioned iterative solutions are achieved for the full physical application range of the
model. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: Boussinesq equations; non-linear waves; �nite di�erence methods; sparse matrix pre-
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1. INTRODUCTION

Boussinesq methods are widely used for predicting the propagation of non-linear wind-
generated waves in harbors and along coast-lines. The principle behind Boussinesq formu-
lations is to incorporate the e�ect of non-hydrostatic pressure while eliminating the vertical
co-ordinate, thus signi�cantly reducing the computational e�ort relative to a three-dimensional
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solution. This principle was initially introduced by the French mathematician Boussinesq in
1872 [1], and since the late 1970s commercial numerical models based on this idea have been
developed to solve practical engineering problems. Over the past 20 years, the international
use of Boussinesq equations has steadily increased, as many researchers and engineers re-
gard these formulations to be a balanced compromise between detailed results and a�ordable
computational cost.
For many years Boussinesq methods have been limited to applications in fairly shallow

water, to non-breaking waves without currents, and to weakly non-linear processes. As a
result of an extensive world-wide research e�ort, the accuracy has improved dramatically
over the past decade, pushing the range of applicability out to ever-deeper relative water
depths. Boussinesq methods are traditionally formulated in terms of a surface elevation and
a horizontal velocity variable, with the vertical velocity variable explicitly eliminated from
the equations. Such two-equation systems (counting the horizontal velocity vector as one
unknown) have been shown to correspond to Taylor series expansions with limited radii
of convergence [2]. This e�ectively limits the range of applicability of such models to at
best (wavenumber times depth) kh≈ 6 for surface quantities, and kh≈ 4 for vertical velocity
distributions, regardless of the order included in the expansion. Examples of modern two-
equation systems can be found in References [3, 4]. Madsen and Agnon [2] have shown,
however, that by retaining the vertical velocity variable as an unknown, as in References [5, 6],
an in�nite radius of convergence is obtained. As a result a �fth-order, three-equation model
can be used to treat highly non-linear waves to kh≈ 25, with accurate velocity pro�les up to
kh≈ 12 e�ectively removing any shallow water limitation.
In this paper e�cient numerical solutions of the three-equation model of Reference [5]

(see also Method III of Reference [6]) in two horizontal dimensions are considered. This
model combines a time-stepping of the exact free surface boundary conditions with a trun-
cated series expansion solution to the Laplace equation in the interior domain. The expansion
is from an arbitrary z-level, and the solution is in terms of all three components of ve-
locity at this level. The increased accuracy of this three-equation model over two-equation
models comes at the expense of a rather complicated system of partial di�erential equations
(PDEs). The complexity of the system is such that iterative methods are necessary to ob-
tain e�cient solutions for even moderately sized problems. The key to an e�cient solution
therefore lies in the preconditioning strategy adopted, and a number of possibilities are devel-
oped. These include complete=incomplete factorizations of the linearized matrix, a matrix-free
(Fourier space) method and an approximate Schur complement approach. A detailed com-
parison of the methods is given for both rotational and irrotational formulations, and the
strengths and limitations of each are discussed. Mesh-independent convergence is demon-
strated with many of the preconditioners for solutions of the irrotational formulation, and so-
lutions using the Fourier space and approximate Schur complement preconditioners are shown
to require an overall computational e�ort that scales linearly with problem size (for large
problems).
The outline of this paper is as follows: The Boussinesq formulation is outlined in Section 2,

while Section 3 describes the numerical (�nite di�erence) model used to solve the equations.
Various preconditioning strategies are described in Section 4, and a detailed comparison of
these methods is given in Section 5. The results of a variable depth simulation involving non-
linear refraction and di�raction are given in Section 6 including comparison with experimental
data. Conclusions are drawn in Section 7.
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2. THE BOUSSINESQ FORMULATION

Consider the �ow of an incompressible, inviscid �uid with a free surface. A Cartesian co-
ordinate system is adopted, with the x- and y-axis located on the still-water plane, and with the
z-axis pointing vertically upwards. The �uid domain is bounded by the sea bed at z=−h(x),
with x= 〈x; y〉, and the free surface at z= �(x; t), where t is time. It is computationally
convenient to express the free surface conditions in terms of velocity variables at the free
surface (see e.g. [5–7]). This leads to the following expressions for the kinematic and dynamic
free surface conditions

@�
@t
=(1 +∇� · ∇�)w̃ − �U · ∇� (1)

@Ũ
@t
=−g∇�−∇

(
Ũ · Ũ
2

− w̃2

2
(1 +∇� · ∇�)

)
(2)

where

Ũ= 〈Ũ ; Ṽ 〉= ũ+ w̃∇� (3)

Here ũ= 〈ũ; ṽ〉 and w̃ are the horizontal and vertical velocities directly on the free surface,
g=9:81 m=s2 is the gravitational acceleration, and ∇ is the horizontal gradient operator i.e.
∇= 〈@=@x; @=@y〉. Evolving � and Ũ forward in time requires a means of computing the
associated w̃, subject to the Laplace equation and the kinematic bottom condition

w +∇h · u=0; z=−h (4)

For this purpose the Boussinesq method described in detail in References [5, 6] is adopted. This
method applies a truncated, Pad�e-enhanced Taylor series expansion of the velocity potential
about an arbitrary level z= ẑ in the �uid. In addition, the vertical component of velocity at
this level is retained as an unknown, leading to an extremely accurate method (applicable to
kh≈ 25 for surface quantities and kh≈ 12 for vertical velocity distributions). Thus, the vertical
distribution of �uid velocity is approximated by

u(x; z; t)= (1− �2∇2 + �4∇4)û∗(x; t) + ((z − ẑ)∇− �3∇3 + �5∇5)ŵ∗(x; t) (5)

w(x; z; t)= (1− �2∇2 + �4∇4)ŵ∗(x; t)− ((z − ẑ)∇− �3∇3 + �5∇5)û∗(x; t) (6)

where

�2 =
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2

− ẑ2

18
; �4 =

(z − ẑ)4
24

− ẑ2(z − ẑ)2
36

+
ẑ4

504

�3 =
(z − ẑ)3
6

− ẑ2(z − ẑ)
18

; �5 =
(z − ẑ)5
120

− ẑ2(z − ẑ)3
108

+
ẑ4(z − ẑ)
504

(7)

In (5) and (6) the quantities û∗; ŵ∗ are utility variables which have been introduced to
allow Pad�e enhancement of the Taylor series operators. Optimal velocity distributions are
obtained near ẑ=−h=2, and we adopt this value throughout. Note that terms multiplied by
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∇ẑ from References [5, 6] are neglected in this work. Note also that this formulation di�ers
slightly from Reference [5] in that (5) and (6) are applied throughout the �uid domain. We
emphasize that throughout this paper the interpretation of the power of ∇ depends on whether
this operator is acting on a scalar or a vector, and in this context the following set of rules
should be obeyed (see Reference [8], Chapter 5)

∇2nu=∇(∇2n−2(∇· u)); ∇2n+1u=∇2n(∇· u)
∇2nw=∇2nw; ∇2n+1w=∇(∇2nw)

Inserting (5) and (6) into (4) gives the following expression of the kinematic bottom condition,
which relates the utility velocity variables û∗; ŵ∗ to each other

(
1− 4

9
�2∇2 +

1
63
�4∇4

)
ŵ∗ +

(
�∇− 1

9
�3∇3 +

1
945

�5∇5
)
û∗

+∇h · (1− c2�2∇2 + c4�4∇4)û∗ −∇h · (�∇− s3�3∇3 + s5�5∇5)ŵ∗=0 (8)

where �=(h + ẑ). Here the slope term coe�cients have been modi�ed through numerical
optimization with respect to the linear shoaling gradient (see Reference [6]) and in �nal form
are c2 = 0:357739; c4 = 0:00663819; s3 = 0:0753019, and s5 =−6:31532× 10−5. Combining
(8) with (5) applied at z= �, while also invoking (3) gives a 3× 3 system that can be solved
for û∗; ŵ∗ in terms of Ũ and �. The resulting system of PDEs is given in matrix form as


A11 − �xB11 A2 − �xB12 B11 + �xA1

A2 − �yB11 A22 − �yB12 B12 + �yA1

A01 + hxC11 + hyC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23





û∗

v̂∗

ŵ∗


=



Ũ

Ṽ

0


 (9)

Here the subscripts x and y denote partial di�erentiation. The system contains a number of
operators, which are given in their entirety in the Appendix. For now it is su�cient to mention
that each operator contains up to either fourth- or �fth-order mixed partial derivatives. This
system of operators shall henceforth be referred to as A, and upon discretization this system
shall be referred to as Ax= b. This paper will in large part concentrate on iterative methods
for solving discrete linear systems of this form. It is also worthwhile to note that under the
assumption of potential (irrotational) �ow such that

@u
@y

− @v
@x
=0 (10)

the system simpli�es slightly to

A=



A1 − �xB11 −�xB12 B11 + �xA1

−�yB11 A1 − �yB12 B12 + �yA1

A01 + hxC1 A02 + hyC1 B0 − hxC13 − hyC23


 (11)
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This system has certain useful mathematical properties which shall be made apparent later.
Water wave models are commonly formulated in terms of a velocity potential, thus not much
is lost physically under this assumption. Solutions involving A stemming from (9) and (11)
will both be considered in this work.
Having solved for the utility variables û∗; ŵ∗ from (9) or (11), w̃ can be computed from

(6) applied at z= �, which closes the problem.

3. THE NUMERICAL MODEL

This section discusses various aspects of the numerical model used for solving the previously
outlined system of PDEs. The system of PDEs is solved numerically using �nite di�erence
approximations, and the model is programmed in FORTRAN 90.

3.1. Boundary conditions

In the numerical solution of any system of PDEs appropriate boundary conditions must be
speci�ed. In the present model combined Dirichlet and Neumann boundary conditions are
used to create closed boundaries on a rectangular domain. Speci�cally, this corresponds to
imposing u=0; @v=@x=0, and @w=@x=0 along x-boundaries; and @u=@y=0; v=0, and
@w=@y=0 along y-boundaries. These conditions are imposed simply by re�ecting the �-
nite di�erence coe�cients evenly for Neumann boundary conditions and oddly for Dirichlet
boundary conditions. This strategy has the advantage of keeping the overall model struc-
ture very regular, as all equations are considered in some fashion at each individual grid
point.

3.2. Time integration

Throughout the present work the classical fourth-order, four-stage explicit Runge-Kutta method
is used for time integration. Due to the wide-spread use of this scheme details are not given
here (see e.g. Reference [9]). Other explicit time-stepping methods have also been considered,
however this particular method has been found to give a good combination of accuracy and
stability at reasonable computational costs. Given the complexity of this system of PDEs
implicit methods are not felt to be very attractive.

3.3. Finite di�erence approximations

In this section we consider the relative merits of several discretizations of A using �nite dif-
ference approximations. These are (a) second-order approximations for each partial derivative,
(b) a 25-point (diamond) �nite di�erence stencil, (c) a 37-point (octagon) stencil, and (d) a
49-point (square) stencil. Each of these stencils is shown in Figure 1. With the exception of
(a), all �nite di�erence approximations are allowed to have the maximum possible accuracy
for the given stencil, which results in greater accuracy for the lower-order partial derivatives
than for their higher-order counterparts. In particular, under �nite di�erence stencil (b) mixed
derivatives of a given order will be less accurate than corresponding pure x- or y-derivatives.
Alternatively, stencil (c) gives equal accuracy for all terms of a given order, and stencil (d)
results in equal accuracy for all x- and y-derivatives of a given order, regardless of the order
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(a)-(b) (c) (d)

Figure 1. Stencils used for the various combinations of �nite di�erence approximations. These stencils
have (a)–(b) 25, (c) 37 and (d) 49 points.

0 1 2 3

-0.01

-0.005

0

0.005

0.01

(a)

η 
[m

]

0 1 2 3

-0.01

-0.005

0

0.005

0.01

(b)

0 1 2 3

-0.01

-0.005

0

0.005

0.01

(c) Time, t [s]

η 
[m

]

0 1 2 3

-0.01

-0.005

0

0.005

0.01

(d) Time, t [s]

η 
[m

]

Figure 2. Computed time series of free surface elevations (at the center-point) from linear standing
wave simulations using (a) second-order �nite di�erence approximations, (b) a 25-point stencil, (c) a

37-point stencil and (d) a 49-point stencil.

of any accompanying derivatives in the other direction. The minimum stencil that can be used
to (centrally) discretize mixed �fth-order partial derivatives is the 25-point stencil, however
the larger stencils do not signi�cantly a�ect the overall structure of A. To demonstrate the
performance of the various �nite di�erence approximations a linear standing wave in two
horizontal dimensions is considered with the initial conditions

Ũ(x; 0)=0 (12)

�(x; 0)=
H
2
cos k1x cos k2y (13)

where H is the wave height, and k1 and k2 are components of the wavenumber vector
k= 〈k1; k2〉= 〈2�=L1; 2�=L2〉 (where L1 and L2 are wavelengths in the x- and y-directions,
respectively). For the remainder of this paper k= |k|=

√
k21 + k

2
2 and L=L1 =L2 shall be

used. Note that in the linear sense Ũ= u0, where u0 = 〈u0; v0〉 are horizontal velocity variables
at z=0. These simulations are on a 21× 21 grid, with H =0:02 m; k1 = k2 = 2� m−1 (i.e.
H=L=0:02; kh=2�), and �x=�y=0:05m. This gives a linear period T =0:6730 s, and the
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Table I. RMSE of computed free surface elevations (compared with linear theory)
using various �nite di�erence approximations in linear standing wave simulations.

Stencil Grid t=4:75T t=5T CPU (s)

2nd-order 21× 21 3:94× 10−4 2:00× 10−5 5.99
25-point 21× 21 1:74× 10−4 6:68× 10−6 5.98
37-point 21× 21 7:59× 10−6 3:46× 10−6 8.41
49-point 21× 21 1:08× 10−5 3:46× 10−6 8.60
2nd-order 81× 81 1:31× 10−5 3:36× 10−6 158
25-point 41× 41 3:24× 10−5 3:50× 10−6 29.8

time step is taken to be �t=T=20=0:03365 s, which has been found to provide su�cient
accuracy. Non-linear terms are switched o� for the simulations so that results should match
linear theory. Resulting time series of surface elevations at the center-point under each �nite
di�erence stencil are shown in Figure 2. Here particular attention should be paid to the zero
crossings, as these should theoretically correspond to a point from the time series. In Figures
2(a) and (b) the period is seen to be noticeably o�, whereas in (c) and (d) it is visually
exact under this discretization. Table I gives quantitative results of the root-mean-squared-
error (RMSE) over the entire domain at t=4:75T and at t=5T , where the free surface
should theoretically be �at and back to its initial condition, respectively. Some results on
larger grids covering the same domain are also shown for comparison. It is again seen that
the 37- and 49-point stencils give a substantial reduction in the accumulated error. Indeed,
achieving similar accuracy with stencils (a) and (b) requires roughly 15 and 4 times as many
grid points, respectively! The reason for the superior accuracy of these two stencils is due to
the relative increase in the formal accuracy of the mixed derivatives. Due to the inclusion of
mixed �fth-order partial derivatives, this model inevitably requires a fairly large �nite di�er-
ence stencil. Correspondingly, it rather naturally lends itself to higher-order �nite di�erence
approximations (for lower-order terms), which can give signi�cant reductions in the overall
computational expense (as well as the storage) required for a desired accuracy. Because the
37-point stencil seems to provide essentially the same accuracy as the 49-point stencil, it will
be used exclusively in the remainder of this work.

3.4. Matrix properties

The matrix, A, arising upon discretization of A (using centred �nite di�erence approxima-
tions) is unsymmetric, but has a symmetric block structure. The matrix can have a variable
sparsity pattern depending on the natural ordering of the equations (i.e. whether the equations
are grouped strictly by PDE or by grid point). Both scenarios are shown in Figure 3. It is seen
that grouping the equations by PDE, as in Figure 3(a), leads to a natural block structure as
seen e.g. in (9). It is often useful to consider such a structure when implementing a precon-
ditioner so that the natural operator structure is maintained. It is likewise seen that grouping
the discrete equations by grid point results in a much smaller bandwidth as in Figure 3(b).
This ordering results in larger, more concentrated blocks, which allows for a more e�cient
implementation of sparse matrix–vector multiplication within various iterative solution strate-
gies. Regardless of the ordering used, the matrix is generally far from diagonally dominant.
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Figure 3. Sparsity patterns of A using a 37-point �nite di�erence stencil on an 11× 11 grid when
grouping the discrete equations (a) by PDE and (b) by grid point.
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Figure 4. Eigenvalues of (a) a shallow-water matrix with kh=
�
5
and

(b) a deep-water matrix with kh=2�.

The matrix is also somewhat unusual in that, while certainly sparse, it contains a substantial
number of non-zeros per row. For example, a 37-point �nite di�erence stencil results in up
to 37× 3=111 non-zeros per row.
The properties of the matrix also vary widely depending on the physical situation, with the

most important parameters being the ratios h=�x and h=�y. Note that under a constant dis-
cretization (in terms of grid points per wavelength) these parameters are directly proportional
to the dimensionless measure of water depth kh= 〈k1h; k2h〉. To illustrate this dependence the
spectrum of eigenvalues, [, for two matrices having di�erent depths (but with identical free
surfaces) are shown in Figure 4. Both matrices are generated from the discretization of (9)
on a 21× 21 grid, with the free surface given by (13) with H =0:05m; k1 = k2 = 2�m−1, and
�x=�y=0:05m. The shallow-water matrix, Figure 4(a), uses h=0:07071m (i.e. kh=�=5;
H=h=0:7071), while the deep-water matrix, Figure 4(b), uses h=0:7071 m (i.e. kh=2�;
H=L=0:05). Both matrices have a minimum eigenvalue near unity. The eigenvalues of the
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shallow-water matrix are reasonably well clustered, which gives evidence that precondition-
ing is not so crucial in these situations. The spectrum of the deep-water matrix is dramat-
ically di�erent, having a much larger spread of eigenvalues throughout the right half of
the complex plane. Preconditioning deep-water problems therefore seems to be much more
critical. These conclusions are further re�ected in the respective condition numbers of the
two matrices, which are 11.5 and 5:47× 103 for the shallow- and deep-water matrices, re-
spectively. The matrices become even more ill-conditioned as the depth is further increased
(or the grid re�ned), but these matrices illustrate the general nature of this particular linear
system.

3.5. Direct matrix factorizations

Due to the structure of A (with a bandwidth that continually increases with problem size)
direct matrix factorizations have been found to be uncompetitive as a general solution proce-
dure. However, many of the strategies developed herein use direct methods within a greater
iterative solution strategy. For all direct matrix factorizations and corresponding solutions the
MA41 package from the well-known Harwell Subroutine Library (HSL) is employed. The
factorization method used is a potentially parallel sparse multi-frontal variant of Gaussian
elimination, which is particularly e�ective on matrices whose sparsity pattern is symmetric,
or nearly so. The method chooses pivots from the diagonal using the approximate mini-
mum degree algorithm of Reference [10]. When solving systems with a single right-hand
side (RHS) the routine also makes e�cient use of level 2 Basic Linear Algebra Subpro-
grams (BLAS), which have been optimized using the Automatically Tuned Linear Algebra
Software (ATLAS, see e.g. Reference [11]). For full details on the factorization method see
References [12–14]. In the present work only the serial version of the code is used (a par-
allel OpenMP version is also available), however, the potential for parallelism is duly noted
here.

3.6. Krylov subspace method

Due to the large number of non-zeros per row in A, the Krylov subspace method best suited to
solving this linear system is arguably the Generalized Minimal RESidual (GMRES) algorithm
of Reference [15]. Indeed, as long as the number of iterations required are kept reasonable
(through e�ective preconditioning), the additional storage required by GMRES is generally the
same order of magnitude or less than the matrix itself. Furthermore, the number of iterations
must become fairly large before an increase in the number of matrix-vector products can be
warranted by restarting the iteration procedure. For these reasons unrestarted GMRES is used
throughout this work.

4. PRECONDITIONING METHODS

The key to the success of any Krylov subspace method used to solve non-trivial linear sys-
tems lies in e�ective preconditioning. A good preconditioner must satisfy the often-con�icting
criteria of approximating A well, while at the same time being somehow ‘easy’ to solve.
This section introduces a number of preconditioning strategies that have proven to be e�ec-
tive in solving Ax= b. Throughout this work the preconditioning matrix shall be denoted
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as M, and the preconditioning operation consists of solving systems of the form Mz= y,
where zT = [z1; z2; z3] and yT = [y1; y2; y3]. All preconditioning in the present work is done
from the left, though in limited testing preconditioning from the right has been found to be
equally e�ective. For recent reviews on iterative methods and preconditioning techniques see
References [16, 17], respectively.

4.1. Factored linear preconditioner

A relatively straight-forward method for preconditioning A is to simply neglect the non-linear
terms (with �=0 in the remaining operators), which leaves for the rotational system

M=




A11 A2 B11

A2 A22 B12

A01 + hxC11 + hyC21 A02 + hxC12 + hyC22 B0 − hxC13 − hyC23


 (14)

and similarly for the irrotational system

M=




A1 B11

A1 B12

A01 + hxC1 A02 + hyC22 B0 − hxC13 − hyC23


 (15)

The physical justi�cation for neglecting the non-linear terms is related to the fact that in
deep water (where the matrix becomes ill-conditioned) the maximum wave steepness phys-
ically possible before breaking is H=L≈ 0:141 [18, 19]. This value gives a rough upper es-
timate for the relative signi�cance of the non-linear terms in deep water. More precisely,
as h becomes large (� − ẑ)≈−ẑ, and M should quite closely resemble A. Unfortunately,
M generally has the same structure as A, and after factorization will have essentially the
same storage demands as would a direct method. The advantage of this approach lies simply
in the fact that M is time-constant. The preconditioner can therefore be factored a single
time at the beginning of a simulation, with the preconditioning operation consisting only of
a solve step. This is quite signi�cant, as a solve step for this system is signi�cantly less
expensive than a factorization step, typically by a factor 10–100 for the range of problem
sizes considered in this work. To combat the sometimes excessive storage demands associ-
ated with this approach single precision (SP) factorizations of M are also considered (still
to precondition A in double precision), thus reducing the storage by roughly a factor of
two.

4.2. ILUT preconditioner

As a lower-storage alternative to the full factorizations described in Section 4.1, incomplete
factorizations of M in (14) or (15) will also be considered. For these purposes the well-known
ILUT factorization of Reference [20] is used. This software uses a dual-threshold dropping
strategy, and is freely available as part of the SPARSKIT package [21]. In earlier testing
(incremental) incomplete factorizations of A have also been considered. However, the use of
incomplete factorizations of the time-constant linear matrix has proven to be a much more
e�cient alternative. Throughout this work a drop-tolerance of 0.005 is used, combined with
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a maximum �ll-in of 200 elements per row (in the factors), which have been found to be
good general parameters for this problem class.

4.3. Fourier space preconditioner

The linearized version of A, as discussed in Section 4.1, should provide an e�ective pre-
conditioner for this system. Unfortunately the high storage requirements for such complete
factorizations can be quite limiting. In search of a more e�cient means of applying this idea,
we also consider an equivalent operation in Fourier space. In the linear sense (i.e. neglecting
non-linear terms), A relates the (utility) velocities at ẑ to the horizontal velocities at z=0.
According to Stokes’ �rst-order theory for constant h, the relationship between û and u0 is
given as

û=
cosh k(h+ ẑ)
cosh kh

u0 = [cosh(−kẑ) + sinh(−kẑ) tanh(k(h+ ẑ))]−1u0 (16)

To gain an expression consistent with the embedded properties of the Boussinesq formula-
tion, the in�nite operators must �rst be replaced by Taylor series expansions. Further Pad�e-
enhancement of the resultant expansions corresponds to transforming from û to the utility
velocities û∗. This procedure ultimately leads to the following replacement operations

cosh(−kẑ)⇒ 1 + k2�2 + k4�4 (17)

sinh(−kẑ)⇒−kẑ + k3�3 + k5�5 (18)

tanh(k(h+ ẑ))⇒ k�+ 1
9k
3�3 + 1

945k
5�5

1 + 4
9k
2�2 + 1

63�
4

(19)

where setting z=0 in (7) gives �2 = 4ẑ2=9; �4 = ẑ4=63; �3 = − ẑ3=9; �5 =−ẑ5=945, and �=
(h+ ẑ). Inserting (17)–(19) into (16) and setting ẑ=−h=2 gives the �nal relationship

û∗=
[
1 +

k2h2

9
+
k4h4

1008
+

(15; 120kh+ 420k3h3 + k5h5)2

907; 200(1008 + 112k2h2 + k4h4)

]−1
u0 (20)

The corresponding preconditioning operation consists of �rstly transforming the components
of the preconditioning RHS y1; y2, and y3 into Fourier space (treating each as 2D arrays).
For this operation 2D combinations of fast sine and cosine transforms are used as appro-
priate for Dirichlet and Neumann boundary conditions, respectively. The preconditioning is
applied entirely in Fourier space, which uses �k1 =�=(�x(N1−1)) and �k2 =�=(�y(N2−1)),
where N1 and N2 are the number of grid points in the x- and y-directions, respectively. The
complete operation is given in Algorithm 1, which is seen to include the truncated rela-
tionship from (20). Note also that solutions for z3(i; j) are found simply through spectral
di�erentiation i.e. replacing @=@x and @=@y with ik1 and ik2, respectively, in the �at-bottom
operators A01; A02, and B0. Once the loops are complete, the 2D arrays corresponding to
z1; z2, and z3 are inverse-transformed back to physical space, completing the preconditioning
operation.
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Algorithm 1 Algorithm for the Fourier space preconditioning operation.

y1 =F{y1}; y2 =F{y2}; y3 =F{y3}
for j=1 to N2 do
k2 = (j − 1)�k2
for i=1; N1 do
k1 = (i − 1)�k1; k=

√
k21 + k

2
2

�=
(
1 +

k2h2

9
+
k2h2

1008
+

(15; 120kh+ 420k3h3 + k5h5)2

907; 200(1008 + 112k2h2 + k4h4)

)−1

z1(i; j)= �y1(i; j); z2(i; j)= �y2(i; j)

Â01 =
k1h

30; 240
(15; 120 + 420k2h2 + k4h4)

Â02 =
k2h

30; 240
(15; 120 + 420k2h2 + k4h4)

B̂0 = 1 +
k2h2

9
+
k4h4

1008
z3(i; j)=

1
B̂0
(y3(i; j)− Â01z1(i; j)− Â02z2(i; j))

end for
end for
z1 =F−1{z1}; z2 =F−1{z2}; z3 =F−1{z3}

This preconditioner should essentially provide the same operation as the factored (irrota-
tional) linear matrix with constant h in (15). It is entirely matrix-free, however, thus any
additional storage requirements are negligible. This preconditioner requires a global value for
h to be applied in Fourier space. The hope was that simply taking an average value over the
domain would still be e�ective in preconditioning the system on a variable bottom. Unfortu-
nately this simple strategy does not appear to work, and it is not immediately clear how to
apply the idea on a variable depth. Therefore, in the present work applications of this pre-
conditioner will be limited to cases having constant depth. Because this method stems from
potential theory it is also expected to be more e�ective in preconditioning the irrotational
system than the rotational system.

4.4. Approximate Schur complement preconditioner

The derivation of an approximate Schur complement preconditioner shall begin with the irro-
tational, �at-bottom system given by 


A1 B11

A1 B12

A01 A02 B0




The justi�cation for neglecting the slope terms is that the formulation (with arbitrary ẑ) inher-
ently includes a mild slope assumption (see again References [5, 6], as well as Reference [22]).
Thus, terms multiplied by hx and hy in (9) and (11) should be of secondary importance. There
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is nothing preventing the application of preconditioners based on this formulation on variable
depth problems, however. Note that in this version, the upper-left 2× 2 system is block di-
agonal, with the A1 operator on both diagonals. This rather unique structure will be taken
advantage of in the following. The Schur complement with respect to this upper left 2× 2
system is

S=B0 −A01A
−1
1 B11 −A02A

−1
1 B12 (21)

It seems natural to �rst simplify S through multiplication by A1, which leaves

S0 =A1B0 −A01B11 −A02B12 (22)

This operation assumes commutivity for all the operators in S, which is strictly true only
when h is constant (i.e. on a �at bottom). However, experience has shown that it is still
reasonable for preconditioning purposes on mildly sloping bathymetries. In full form S0 is
the following 10th-order operator

S0 = 1− 17h2∇2

36
+
16h4∇4

567
− h6∇6

2240
+

29h8∇8

15; 240; 960
− h10∇10

914; 457; 600
(23)

At �rst glance inverting the discrete sub-matrix S0 might seem an insurmountable task (here
a sub-matrix refers to a matrix with rank equal to the number of grid points N , i.e. 13 that
of A); however it turns out, quite remarkably, that the operator can be factored into �ve
second-order modi�ed Helmholtz operators i.e.

S0 =
5∏
i=1
(1− aih2∇2) (24)

where a1 = 0:4052847276166189; a2 = 0:04500344115884187; a3 = 0:01558017599415051;
a4 = 0:005675885605119240 and a5 = 0:0006779918474916520. Such a factorization can be
shown to exist by considering (23) as a polynomial in h2∇2, which can in-turn be shown to
have all real roots. Similarly, A1 can be factored as

A1 =
(
1− h2∇2

4(14−√
133)

)(
1− h2∇2

4(14 +
√
133)

)
(25)

Thus, the preconditioning operation can be simpli�ed to the quite-manageable task of inverting
nine second-order sub-matrices and three sub-matrix-vector multiplications! The preconditioner
is given by

M=



A1

A1

A01 A02 S0A−1
1


 (26)

where S0 and the two upper-left A1 sub-matrices correspond to discrete forms of (24) and (25),
respectively. It should be stressed that the three A1 sub-matrices in (26) all have di�erent
boundary conditions corresponding to their respective column position. It is interesting to
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mention that the preconditioned (linear, irrotational, �at-bottom) system (maintaining operator
form) becomes

M−1A=



1 0 A−1

1 B11

0 1 A−1
1 B12

0 0 1


 (27)

Thus, even though M−1 in no sense approximates A−1, it should still have a similar clustering
e�ect on the eigenvalues of A. All sub-matrices in M are again time-constant, and can be
built and (if necessary) factored a single time at the beginning of a simulation. Second-order
(�ve-point) �nite di�erence approximations for all Laplacian operators are used in practice as
MA41 is extremely e�ective in limiting �ll-in in matrices having a single outer band. As a
result, this preconditioner should have very low storage demands, and as no truncations have
been imposed, should not be limited by problem depth. It is again expected that this approach
will be more e�ective in preconditioning the irrotational matrix than the full rotational matrix,
however it shall be applied in either case.
Discussion on the use of Schur complement preconditioners on matrices with reasonably

similar (2× 2) block structures is given in References [23, 24]. For other applications see e.g.
References [25, 26].

5. COMPARISON OF PRECONDITIONERS

To compare the preconditioning strategies outlined in Section 3 non-linear simulations using
the initial conditions from (12) and (13) shall be used, again with k1 = k2 = 2� m−1 (i.e.
L=L1 =L2 = 1 m). This provides a simple means for varying the non-linearity, water depth,
and discretization. For ease of interpretation, all results will be reported in this section in
terms of the dimensionless variables kh, and either H=h or H=L for shallow- and deep-water
cases, respectively. As reference values, kh≈� is often taken as the practical deep-water limit,
and (as noted previously in Section 4.1) the maximum deep-water wave steepness physically
possible (before wave breaking) is H=L≈ 0:141. Similarly, at the shallow water limit breaking
occurs at H=h≈ 0:8. All computations are performed on a Dell Pentium 4 1:8 GHz processor
with 1024 MB DDR RAM, and all iterative solutions use a relative residual error tolerance
r= ‖b−Ax‖2=‖b‖2 of 10−6. Within all simulations the previously found solution vector x is
used as the starting guess for each successive iterative solution.

5.1. Performance versus relative water depth

Figure 5 demonstrates how the relative water depth, kh, a�ects the performance of the various
preconditioning strategies under a constant discretization. These simulations use a 33× 33
grid, are for 101 time steps, with H=L=0:05 m; �x=�y=0:0625 m (i.e. 16 grid points
per wavelength), and �t=0:03365 s. The domain covers two wavelengths in both horizontal
directions. Table II also provides a summary of the simulations at both the shallow and deep
extremes, giving the range of iterations required with each method. In quite shallow water
it can be seen that preconditioning is perhaps not so critical, as even the results with no
preconditioning are reasonable. This is consistent with the expectations from Section 3.4. As
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Figure 5. CPU times (101 time steps, H=L=0:05) under variable depth for solving (a) the rotational
system and (b) the irrotational system.

Table II. A summary of the simulations having the minimum and maximum kh val-
ues from Figure 5. All simulations are on a 33× 33 grid, for 101 time steps, with
�x=�y=0:0625m, and �t=0:03365 s. The description column corresponds to the

entire list of simulations to the right.

Rotational Irrotational

Description Preconditioner Iterations CPU (s) Iterations CPU (s)

Shallow water: Linear 3–12 80.5 3–13 83.2
kh=

�
5

Linear (SP) 3–12 75.1 2–13 77.5
H
h
=0:7071 ILUT 3–14 61.2 3–16 60.3

Fourier 5–14 56.3 4–15 54.4
Schur 4–13 67.8 5–15 71.7
None 8–23 78.5 9–27 84.2

Deep water: Linear 2–9 64.9 2–9 62.7
kh=2� Linear (SP) 2–10 57.3 2–9 55.6
H
L
=0:05 ILUT 14–40 309 7–21 128

Fourier 2–21 62.3 2–10 41.2
Schur 3–20 90.0 4–14 68.5
None 94–206 747 85–129 513

kh increases (even moderately), however, it is seen that some form of preconditioning becomes
absolutely necessary. The ILUT preconditioner works quite well in shallow to intermediately
deep water, however it rapidly loses e�ectiveness as the depth is further increased. This trend
is more exaggerated when solving rotational problems, but the method eventually fails in either
case. A somewhat similar loss in e�ectiveness is seen with the Schur complement and (to some
degree) with the Fourier space preconditioner for the rotational matrix. The observed increase
in CPU time is much more controlled in these instances, however. Both provide noticeably
more e�cient solutions for irrotational simulations, which was expected from Sections 4.3
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Figure 6. CPU times (101 time steps, kh=2�) under variable deep-water non-linearity when solving
(a) the rotational system and (b) the irrotational system.

and 4.4. Somewhat remarkably, many of the preconditioners actually become more e�ective
as the depth is increased. This can again easily be explained physically by the fact that as h
increases (�− ẑ)≈−ẑ. These results will inevitably change under di�erent discretizations, non-
linearity, and problem size, however the trends seen here remain very consistent. Experience
has shown that the results in Figure 5 are quite representative.

5.2. Performance versus non-linearity

Figure 6 provides a similar comparison of CPU times for simulations where the deep-water
non-linearity (or wave steepness), H=L, is varied. These simulations are again on a 33× 33
grid, for 101 time steps, with kh=2�; �x=�y=0:0625m, and �t=0:03365 s. As Figure 5
has shown simulations with the ILUT preconditioner to be uncompetitive at this depth, this
preconditioner is not considered in the remainder of this section. As Figure 6 demonstrates,
all of the preconditioning methods gradually lose some e�ectiveness as the non-linearity is
increased. This is expected, as the non-linear terms have been neglected in the preconditioners.
The growth is very acceptable, however, and the simulation time grows roughly linearly
with the wave steepness. As can be seen, the preconditioners remain e�ective even when
the non-linearity is quite high (results up to H=L=0:12 are shown). Consistent with previous
observations, the Fourier space and Schur complement methods are more sensitive to increases
in non-linearity when solving the rotational system, as characterized by their steeper slopes.

5.3. Performance versus grid re�nement

Figure 7 demonstrates how the preconditioning strategies perform when the mesh is re�ned
under a constant depth and non-linearity. These simulations use kh=2�; H=L=0:08, and
a constant fraction �x=�t=�y=�t=1:857 m=s. Each simulation uses a domain covering a
single wavelength in each horizontal direction, and covers the equivalent of a linear period i.e.
to t=0:6730 s. The reported iterations are the average from each simulation. These tests are
quite demanding, as re�nements in the mesh make A increasingly ill-conditioned. Solutions
for the rotational system using the Schur complement and linear (SP) preconditioners can be
seen to be rather sensitive to re�nements in the mesh, as the number of required iterations
increases signi�cantly. The linear (SP) preconditioner is fairly robust with discretizations up
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Figure 7. Average number of iterations required over a linear period (kh=2�; H=L=0:08) when
solving (a) the rotational system and (b) the irrotational system. The domain in each simulation
covers a single wavelength in each horizontal direction, and the time step is varied such that
�x=�t=�y=�t=1:857 m=s is constant. Note that the curves for both linear preconditioners in (b)

are visually indistinguishable from one another.

to around 48 grid points per wavelength, however. The results for the irrotational system
are most impressive, as the required number of iterations actually decreases as the mesh is
re�ned. This decrease is simply due to the use of smaller time steps as �x and �y are
reduced, thus the starting guess for each iterative solution becomes better as the mesh is
re�ned. The results with both linear preconditioners are virtually indistinguishable from one
another in Figure 7(b). Over this quite realistic discretization range the convergence using each
of the preconditioners for solving the irrotational system appears to be mesh independent. The
linear and (somewhat surprisingly) Fourier space preconditioners seem to be the most robust
when solving the rotational system. In practice (see e.g. Section 3.3) solutions using as few
as 15–20 grid points per wavelength have been found to give su�cient accuracy, perhaps
making such �ne discretizations unnecessary with this model. Mesh independence is a very
desirable property nonetheless, and is rarely achieved with conventional (ILU or approximate
inverse) preconditioning techniques [17]. The use of complete factorizations within the greater
iterative strategy seems to have made this achievement possible.

5.4. Storage comparison

As hinted in Section 4, the storage required by each of the preconditioners varies signi�cantly.
To illustrate this point, Table III shows the length of real storage that must be allocated for
each preconditioner for a variety of problem sizes. Also shown for comparison is the length of
the real array required to store A. The linear preconditioners can be seen to have quite large
storage demands, which are generally an order of magnitude more than for the matrix itself.
The use of single precision factorizations has proven to be an e�ective method for reducing
these demands, however even in this case the storage can be quite limiting. The Fourier
and Schur complement methods, on the other hand, have much lower storage requirements.
These results show that the additional storage required by the Fourier space preconditioner is
essentially negligible, while that of the Schur complement preconditioner is roughly double
that of A (for large problems), which is still very reasonable.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:231–255



248 D. R. FUHRMAN AND H. B. BINGHAM

Table III. Length of real storage allocated for the various preconditioners compared with the matrix A
for a wide range of problem sizes.

Grid N A Linear Fourier Schur

17× 17 289 8:1× 104 4:0× 106 8:7× 102 1:1× 105
33× 33 1089 3:3× 105 2:3× 106 3:3× 103 4:9× 105
65× 65 4225 1:3× 106 1:5× 107 1:3× 104 2:3× 106
129× 129 16,641 5:4× 106 8:4× 107 5:0× 104 1:1× 107
257× 129 33,153 1:1× 107 1:8× 108 9:9× 104 2:4× 107
257× 257 66,049 2:2× 107 4:3× 108 2:0× 105 5:3× 107

Table IV. Percentage CPU time spent in major operations during irrotational simulations (101 time steps,
kh=2�; H=L=0:05) on a 129×129 grid using the various preconditioners. The numbers in parenthe-
ses correspond to the percentage of the preconditioning operation spent in level 2 BLAS. The total

CPU time for each simulation is also provided.

Operation Linear Linear (SP) Fourier Schur

Mat.-vec. prod. 19.8 24.6 50.5 40.3
Build A 12.3 15.1 28.4 15.3
Preconditioning 63.1 (89.0) 54.7 (88.7) 13.8 38.6 (25.1)
GMRES 1.2 1.8 3.7 2.9
Time int. 1.2 1.4 2.7 1.5
Misc. 2.4 2.4 0.9 1.4
Total CPU (s) 1587 1295 679 1268

5.5. Breakdown of computational expenses

Given the large di�erences in the storage demands (and therefore in the corresponding num-
ber of required �oating point operations per iteration), it might seem surprising that the
linear preconditioning methods are competitive at all with the Fourier and Schur complement
approaches, as the required number of iterations do not di�er nearly as signi�cantly. The ex-
planation is apparent upon a pro�ling of the simulations, a sample of which is given in Table
IV. Here a breakdown of the computational expense of the major operations (in percentages)
is provided for solutions with each preconditioner. The results shown are from irrotational
simulations using 101 time steps on a 129× 129 grid, with kh=2�; H=L=0:05; �x=�y=
0:0625m, and �t=0:03365s. It is seen that the preconditioning operation dominates the time
spent in solutions using the linear preconditioners. Quite remarkably, nearly 90 per cent of this
operation is spent inside level 2 BLAS routines. Thus, with these preconditioning strategies
a high �op rate more closely associated with direct methods is achieved. Alternatively, the
Fourier space preconditioning method is seen to be dominated by the sparse matrix-vector
product, which is an inherently slower operation. Solutions using the Schur complement pre-
conditioner require roughly the same time for the preconditioning operation and the sparse
matrix-vector product, with a much smaller portion of the preconditioning operation spent in
level 2 BLAS. Also noteworthy is the fairly small portion spent inside GMRES (regardless
of the preconditioner), which seemingly con�rms the arguments from Section 3.6. We stress
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Figure 8. CPU time per grid point (101 time steps, kh=2�; H=L=0:10) for solving (a) the rotational
system and (b) the irrotational system.

that the information in Table IV is only meant to provide a comparison of the relative ex-
pense of the major operations for simulations using each preconditioner. To obtain the overall
expense of each operation, the percentages can be multiplied by the total CPU time given at
the bottom of the table.

5.6. Performance versus problem size

To gain insight into how solutions using the various preconditioning strategies scale with
problem size, Figure 8 shows the results of simulations where the number of grid points,
N , is continually increased. Note that the rank of A is actually 3N , as each grid point
houses velocity variables in three directions. All simulations are for 101 time steps, with
kh=2�;H=L=0:10; �x=�y=0:0625 m, and �t=0:03365 s. Results solving both the ro-
tational and irrotational systems are shown. Solutions with each preconditioner are carried
out roughly to the maximum problem size possible on this machine (with 1024 MB RAM).
The average number of iterations required for each simulation is essentially identical to that
presented in Figure 6 for this non-linearity. The degree of non-linearity does not a�ect the
general shape of the curves—it does, however, a�ect the relative solution times of the various
methods, as should also be expected from Figure 6. Perhaps the most impressive of the meth-
ods considered is the Fourier space preconditioner, which gives a constant solution time per
grid point for virtually any size of problem. The relative expense of the other preconditioning
methods gradually �attens as the problem size is increased, which is perhaps more typical.
Also noteworthy is the performance of the Schur complement preconditioner (especially in the
irrotational simulations), which levels o� much faster than the linear preconditioners. Indeed,
it is seen that although this method is slower for small problems, it becomes the fastest of the
variable-depth preconditioners for large potential �ow problems. As mentioned previously,
the method is less e�ective in preconditioning the rotational matrix, but for large variable
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depth problems (moderately deep, where the non-linearity is not too large) it still seems to be
a viable alternative. The linear preconditioners are equally e�ective in preconditioning both
the rotational and irrotational systems, making them perhaps the most robust of the schemes
devised.

5.7. Overview

As demonstrated throughout this section, each of the preconditioning methods presented has
its own respective strengths and weaknesses. It is when viewed as complementary that they
are seen to be very robust, as they e�ciently cover the entire physical range of applicability
of the Boussinesq model. Interestingly, many of the methods also serve as quite modern
examples of the combined use of direct and iterative methods for sparse matrices, and as
a result are robust in situations where more conventional ILU-based methods fail. In short,
through combined physical and mathematical insight, the preconditioning methods successfully
transform an extremely di�cult problem to one ‘whose solution can be approximated rapidly’
[27], even in the most physically demanding situations. This is, of course, the very essence
of preconditioning.

6. MODEL VERIFICATION

To demonstrate the e�ectiveness of the preconditioning strategies on a more realistic problem
(i.e. with a variable depth) the experiments of Reference [28] involving non-linear refraction
and di�raction shall be considered. Speci�c attention will be paid to the deep-water case with
T =1 s. This experiment has been used extensively in the literature to validate numerical
models, and for a detailed description of the underlying physics the reader is referred to
Reference [29]. The topography used connects deep and shallow regions with a shoaling
region that acts as a focusing lens, and is described (in meters) by

h(x; y)=




0:4572 if 06x610:67−G

0:4572 +
1
25
(10:67−G − x) if 10:67−G6x618:29−G

0:1524 otherwise

(28)

where

G(y)=
√
y(6:096− y) (29)

Gradients of h in both horizontal directions are also calculated analytically. Because the
bathymetry is symmetric about the centerline (i.e. at y=3:048 m) only half of the domain
is modeled. For all simulations �x=0:0762m; �y=0:1524m, and �t=0:03906 s are used.
Because the variation is much weaker than in the x-direction, a coarser discretization in
the y-direction is justi�ed. A 50-point sponge layer is applied in the region after x=30m to
prevent re�ections. An analytical wave-maker is applied at the deep end (relaxed over 21 grid
points, in the negative x-direction), where a stream-function solution (as in Reference [30])
is imposed. The solution uses H =0:039 m, and (Stokes’ drift velocity) cs=0 m=s to match
the conditions of a closed �ume, and gives a wavelength L=1:50m. The total computational
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Table V. Summary of simulations modelling the experiment of Reference [28] with T=1s.

Formulation Preconditioner Iterations CPU (h)

Rotational Linear 4–10 4.39
Rotational Linear (SP) 3–10 6.59
Rotational ILUT 4–10 4.57
Rotational Schur 6–17 5.13
Irrotational Linear 3–10 4.75
Irrotational Linear (SP) 3–10 6.39
Irrotational ILUT 4–10 4.16
Irrotational Schur 6–13 5.09

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

A
m

pl
itu

de
 [m

]

Boussinesq (1st)
Boussinesq (2nd)
Boussinesq (3rd)
Measured (1st)
Measured (2nd)

Figure 9. Computed and measured harmonic amplitudes for simulations modelling the
experiments of Reference [28] with T =1 s.

domain consists of a 467× 21 grid, and simulations are for 2001 time steps. In each simulation
a 10th-order, 109-point (octagon) Savitzky-Golay smoothing �lter [31, 32] is applied every 20
time steps, which is necessary to remove high-frequency instabilities caused by the non-linear
terms (this discretization can be shown to satisfy standard linear stability criterion). The end
result is a very minor loss of accuracy.
Table V provides a summary of the simulations using the various preconditioning strategies

for both rotational and irrotational simulations. As this problem is not extremely deep, all of
the preconditioning methods are very e�ective. However, solutions of this problem are far
from trivial and some form of preconditioning is necessary to achieve reasonable solution
times. Notably, the Schur complement preconditioner remains e�ective on this variable-depth
problem, even though it has neglected bottom slope terms. Curiously, the results using the
linear (SP) preconditioner are slower than with the double precision alternative, which con-
tradicts previous �ndings.
Figure 9 shows computed harmonic amplitudes along the centerline at y=3:048 m along

with experimental measurements. The harmonic analysis uses a linear least-squares �t with
data from the last 500 time steps. The results shown are from the rotational simulation (using
the linear preconditioner), however those from the other simulations are virtually identical.
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The match with the experimental data is most acceptable, and compares well with others from
the literature, thus highlighting the accuracy of the Boussinesq model. Other, more di�cult
problems involving non-linear, deep-water wave dynamics are currently under investigation.

7. CONCLUSIONS

This paper presents a new high-order �nite di�erence method for fully non-linear and highly
dispersive water waves in two horizontal dimensions. The method solves the high-order,
three-equation Boussinesq formulation derived in References [5, 6]. High-order �nite di�er-
ence approximations are shown to be more e�cient than low-order approximations (for a
given accuracy), despite the additional overhead. The formulation requires that an often ill-
conditioned sparse matrix arising from a non-linear system of PDEs be solved at each stage
evaluation, and a number of di�erent preconditioning strategies are developed for this pur-
pose. These include complete factorizations of the linearized matrix, ILU factorizations, a
matrix-free (Fourier space) method, and an approximate Schur complement approach. The
preconditioners are tested under a variety of physical situations (i.e. varying the depth, dis-
cretization, and non-linearity), as well as on both rotational and irrotational formulations. With
the exception of the ILU-based method, all preconditioners are found to be very e�ective in
solving deep-water problems, which are by far the most di�cult. In particular it is shown
that the factored linear preconditioners are perhaps the most robust of the methods devised,
as they are equally e�ective in solving both the rotational and irrotational systems. Their
high storage demands, however, can limit the problem size to some degree. Alternatively, the
Fourier space preconditioner has essentially negligible storage demands, and consistently pro-
duces the fastest solutions (for irrotational simulations) when it is applicable. Unfortunately,
it is seemingly limited to solving constant depth problems on regular domains. Finally, the
approximate Schur complement method has low storage demands, and is particularly e�ective
in solving large potential-�ow problems. Mesh-independent convergence is demonstrated with
many of the preconditioners for solutions of the irrotational formulation, and solutions using
the Fourier space and approximate Schur complement preconditioners are shown to require
an overall computational e�ort that scales linearly with problem size (for large problems).
As is evident, each of the methods have their own respective strengths and weaknesses, and
should therefore be viewed as complementary. In general, the methods are quite robust, and
are e�ective for the full physical range of applicability of the model. Results matching a
well-known physical experiment demonstrate the applicability of the methods on a variable
depth problem, and highlight the accuracy of the numerical model.

APPENDIX

This section includes the various operators in the system of PDEs denoted herein as A. The
enhanced free surface operators from the rotational system (9) are

A11 = 1− �2
(
@2

@x2

)
+ �4

(
@4

@x4
+

@4

@x2@y2

)
(A1)
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with the � and � coe�cients in (7) applied at z= �. The basic bottom operators are

A01 = (h+ ẑ)
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The bottom slope operators (in the x-direction) are

C11 = 1− c2(h+ ẑ)2
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(
@2

@x@y

)
+ c4(h+ ẑ)4

(
@4

@x3@y
+

@4

@x@y3

)
(A10)

C13 = (h+ ẑ)
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and in the y-direction

C21 =C12 (A12)
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(A14)

The additional operator used in the irrotational system (11) is

C1 = 1− c2(h+ ẑ)2
(
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@x2
+
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)
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(
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It is also noted that an equivalent expression for w̃ from (6) applied at z= � is

w̃=A1ŵ∗ −B11û∗ −B12v̂∗ (A16)
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